New spectroscopic and electrochemical insights on a class I superoxide reductase: evidence for an intramolecular electron-transfer pathway.

نویسندگان

  • Filipe Folgosa
  • Cristina M Cordas
  • Joana A Santos
  • Alice S Pereira
  • José J G Moura
  • Pedro Tavares
  • Isabel Moura
چکیده

SORs (superoxide reductases) are enzymes involved in bacterial resistance to reactive oxygen species, catalysing the reduction of superoxide anions to hydrogen peroxide. So far three structural classes have been identified. Class I enzymes have two iron-centre-containing domains. Most studies have focused on the catalytic iron site (centre II), yet the role of centre I is poorly understood. The possible roles of this iron site were approached by an integrated study using both classical and fast kinetic measurements, as well as direct electrochemistry. A new heterometallic form of the protein with a zinc-substituted centre I, maintaining the iron active-site centre II, was obtained, resulting in a stable derivative useful for comparison with the native all-iron from. Second-order rate constants for the electron transfer between reduced rubredoxin and the different SOR forms were determined to be 2.8 × 10⁷ M⁻¹ · s⁻¹ and 1.3 × 10⁶ M⁻¹ · s⁻¹ for SORFe(IIII)-Fe(II) and for SORFe(IIII)-Fe(III) forms respectively, and 3.2 × 10⁶ M⁻¹ · s⁻¹ for the SORZn(II)-Fe(III) form. The results obtained seem to indicate that centre I transfers electrons from the putative physiological donor rubredoxin to the catalytic active iron site (intramolecular process). In addition, electrochemical results show that conformational changes are associated with the redox state of centre I, which may enable a faster catalytic response towards superoxide anion. The apparent rate constants calculated for the SOR-mediated electron transfer also support this observation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain motions and electron transfer dynamics in 2Fe-superoxide reductase.

Superoxide reductases are non-heme iron enzymes that represent valuable model systems for the reductive detoxification of reactive oxygen species. In the present study, we applied different theoretical methods to study the structural dynamics of a prototypical 2Fe-superoxide reductase and its influence on electron transfer towards the active site. Using normal mode and essential dynamics analys...

متن کامل

Spectroscopic Studies on Charge-Transfer Complexation of Iodine with Dibenzo-15-crown-5 and Benzo-12-crown-4 in Chloroform, Dichloromethane and 1,2-Dichloroethane

The formation of charge-transfer complexation between dibenzo-15-crown-5 (DB15C5) and benzo-12-crown-4 (B12C4) (Donor) and iodine is investigated spectrophotometrically in three chlorinated solvents,chloroform, dichloromethane (DCM) and 1,2-dichloroethane (DCE) solution at 25°C. The change in polarityof the solvent also doesn’t affect the stoichiometry of the complexes. Values of formation cons...

متن کامل

Spectroscopic Study of Charge Transfer Complexes of Dibenzo-24-crown-8 (DB24C8) with Iodine in Three Chlorinated Solvents

Charge Transfer (CT) complexes formed between dibenzo-24-crown-8 (DB24C8) as an electron donor with the σ-electron acceptor iodine (I2) in chloroform, dichloromethane, and 1,2-dichloroethane solutions have been studied by different spectroscopic techniques at room temperature. The spectral studies of the complexes were det...

متن کامل

Thioacetyl-terminated ferrocene-anthraquinone conjugates: synthesis, photo- and electrochemical properties triggered by protonation-induced intramolecular electron transfer.

Two thioacetyl-terminated ferrocene-anthraquinone donor-acceptor molecules with different pi-electron conjugative units have been synthesized via a series of Stille and Sonagashira reactions. Their photochemical and electrochemical properties before and after addition of an organic acid are investigated, indicating that these complexes are sensitive to external perturbation of protonation, lead...

متن کامل

Photochemical Ribonucleotide Reductase for the Study of Proton-Coupled Electron Transfer

Charge transport and catalysis in enzymes often rely on amino acid radicals as intermediates. The generation and transport of these radicals are synonymous with proton-coupled electron transfer (PCET), which intrinsically is a quantum mechanical effect as both the electron and proton tunnel. The caveat to PCET is that proton transfer (PT) is fundamentally limited to short distances relative to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 438 3  شماره 

صفحات  -

تاریخ انتشار 2011